Researchers at the University of Houston Are Optimistic About Bioelectronics

3D printing news
2022
07/06
01:10
分享
评论
A June 16, 2022 edition of the materials science journal Advanced Materialsincludes a study, published by a team at the University of Houston, on 3D printed, micro-scale, organic electronics. The team was led by UH professor Mohammad Reza Abidjan, director of the Advanced Regenerative Biomaterials and Therapeutics for Neural Interfaces laboratory at the university.
The study rEvolved around the team’s creation of a unique 3D printing resin, infused with an organic semiconductor (OS) material. The researchers used the resin to print multiple objects, including a micro-printed circuit board, on a multi-photon lithography (MPL) 3D printer.

wp1.jpg


In the article, the team concludes, “We anticipate that the presented MPL-compatible OS composite resins will pave the path towards production of soft, bioactive, and conductive microstructures for various applications in the emerging fields of flexible bioelectronics, biosensors, nanoelectronics, organ-on-chips, and immune cell therapies.”

Notably, the team found that adding just one-half-of-one percent of the OS material in the resins yielded about 10 orders of magnitude (about 100 times greater) electrical conductivity compared to other MPL-based methods. Additionally, one of the objects the researchers created was a glucose biosensor, which they infused with laminin and glucose oxidase. Prior to printing, the team ran experiments to ensure that the OS composite microstructures retained bioactivity during the MPL process.

wp2.jpg


It found that, compared to the control group, the microstructures retained 94 percent bioactivity during printing. Once this was determined, the biosensor itself was printed. The team determined it to be 10 times more sensitive than existing glucose biosensors.
All the other divisions within the 3D printing sector are becoming evermore commonplace these days, so it’s nice to see that some applications of the tech are still veering into the science fiction realm. Nano-printing probably represents the last remaining frontier of that quality, and the current example is better than most. In case it wasn’t clear, one of the optimal identified applications of the tech in the study is implanted neural chips.
Aside from this, there are a wide variety of other applications, most of them involving various forms of biomedical prostheses. In addition, of course, there’s the ever-growing field of wearable sensors. Presumably, that sector (like just about everything else humans consume, to be sure) will continue to create ever-increasing amounts of garbage well into the future, so it would be a real breakthrough if “organic” in the case of electronics could eventually mean less environmentally destructive. That is, if we’re going to keep creating the garbage, we should try to make it out of as much of something that’s decomposable, as possible.
Images courtesy of University of Houston
Subscribe to Our Email Newsletter


Stay up-to-date on all the latest news from the 3D printing industry and recieve information and offers from thrid party vendors.



  • Enter your email address*
  • Name
    This field is for validation purposes and should be left unchanged.

上一篇:Sensing temperature and bending at the same time with 3D printed optical fiber t
下一篇:Roboze launches PRO series 3D printers and two new filaments – technical specifi
回复

使用道具 举报

推动3D打印

关注南极熊

下载手机APP

联系QQ/微信9:00-16:00

392908259

南极熊3D打印网

致力于推动3D打印产业发展

快速回复 返回列表 返回顶部