史玉升教授团队:以柚子皮为灵感的高能量吸收梯度仿生超材料的设计和3D打印

3D打印前沿
2023
04/03
10:29
分享
评论
来源:机械工程学报

超材料是一种工程材料,具有独特的属性和先进的功能,这是其微结构组成带来的直接结果。虽然最初的特性和功能仅限于光学与电磁学,但在过去十年中出现了许多新型超材料,它们在许多不同的研究和实践领域都有应用,包括声学、力学、生物材料和热工等。

过去十年,旨在设计、模拟、制造和表征不同类型的超材料的研究在广度和深度上都出现了爆炸性增长。这种前所未有的增长主要发生在三大发展的交汇处,这些发展相互加强,并促进了超材料的研究。增材制造-3D打印技术在超材料设计开发与制造中发挥了重要作用,特别是,可以在不同的长度尺度上制造功能材料和结构,不同材料在一个单一结构中具有任意复杂的多相分布,具有截然不同的机械和物理特性。

640.jpg

高比能量吸收(SEA)的轻质、高强度超材料在航空航天和汽车领域具有重要应用前景。受柚子皮保护果肉的抗冲击性和功能梯度结构可提高比能量吸收(SEA)能力的启发,华中科技大学史玉升教授团队在一项研究中采用软材料(光敏树脂)和硬材料(Ti-6Al-4V)进行3D打印,制备了梯度仿生多面体超材料(GBPM),其SEA超过了前期报道中大多数软材料和硬质材料制造的超材料比能量吸收(SEA)。

相关论文发表在Chinese Journal of Mechanical Engineering: Additive Manufacturing Frontiers。本期谷.专栏将分享该论文的亮点、试验方法、结果与结论,以及这一技术的应用前景。

论文亮点

640-1.jpg
图1 SEA Ashby图与各种现有超材料的对比

•提供了一种实现卓越能量吸收的仿生策略。

•验证了材料对机械响应和比能量吸收的影响。

•仿生梯度多面体的比能吸收超过了以前的大多数超材料。

试验方法
激光选区熔化Ti-6Al-4V粉末及数字光处理光敏树脂制造仿生多面体超材料,扫面电镜观察仿生多面体形貌,准静态压缩仿生多面体超材料,Abaqus动力学显式仿真准静态压缩过程。
640 2.jpg

图2 仿生多面体超材料的形态演化:( a )自然界中的柚子表面和柚子皮;( b )柚子皮[ 8、15]的微观结构;( c )受柚子皮启发设计了BPM单胞;( d )相对密度-支柱直径关系;( E )设计了Ubpm模型;( f )设计了Gbpm模型。


结果
在压缩试验和数值模拟的指导下,SEA能力的提高与材料无关。在应力-应变曲线中,波动区出现在硬材料制造的仿生多面体超材料(BPMs)中,而在软材料制造的BPMs中不存在,导致软材料制造GBPM的SEA值的增长率比硬材料制造GBPM提高了5.9倍。软材料和硬材料制造的GBPM的SEA值分别为1.89 J/g和44.16 J/g,超过了先前研究中报道的大多数软材料和硬质材料制造的超材料的SEA。

结论
1. 分级设计降低了力学性能,将45°剪切断裂转化为逐层破坏。与硬材料制造的BPMs相比,软材料制造的BPM表现出延迟的致密化应变。

2. 提高SEA的梯度设计与所用材料无关。与UBPM相比,GBPM可以实现增强的SEA。在软材料制造的BPMs的断裂阶段没有出现波动区,与硬材料相比,软材料制造GBPM的SEA值的增长率提高了5.9倍。

前景与应用
仿生梯度设计可提高超材料的能量吸收效果,研究中所涉及的仿柚子皮梯度超材料的SEA超过了先前研究中报道的大多数软材料和硬质材料制造的超材料的SEA。以上发现可以指导具有高能量吸收以抵抗外部冲击的超材料的设计。

原论文:
Zhi Zhang, Bo Song, Junxiang Fan, Xiaobo Wang, Shuaishuai Wei, Ruxuan Fang, Xinru Zhang, Yusheng Shi. Design and 3D Printing of Graded Bionic Metamaterial Inspired by Pomelo Peel for High Energy Absorption. Chinese Journal of Mechanical Engineering: Additive Manufacturing Frontiers, 2023: 100068.
https://doi.org/10.1016/j.cjmeam.2023.100068.

研究团队
640-2.jpg
史玉升 华中科技大学华中学者领军岗特聘教授
现任数字化材料加工技术与装备国家地方联合工程实验室(湖北)主任,教育部创新团队负责人。担任Smart Manufacturing等多个期刊编委。国内外发表论文200余篇,主编出版专著教材8部,主持国家科技支撑计划、国家重点研发计划、02和04科技重大专项、863、国家自然科学基金、国际合作等科研项目20余项。在增材制造领域,获中国十大科技进展1项、中国智能制造十大科技进展1项、国家技术发明二等奖1项、科技进步二等奖各2项、省部级一等奖8项、国际发明专利奖4项、湖北省优秀专利奖1项、湖北省专利金奖1项、中国和湖北高校十大科技成果转化项目各1项,获发明专利40多项并实现了产业化。研究成果被国内外1000多家用户所采用,不但服务于我国,而且也出口美英德等国。
640-1 2.jpg
宋波(本文通讯作者)教授
教育部联合基金创新团队项目负责人,军委科技委国防科技创新特区“4D打印和特种制造技术”主题组专家;担任14个期刊的编委或客座主编;主持国家自然科学基金,军委科技委国防科技创新特区等项目15项;出版中英文专著3部,累计在Materials Today、Acta Materialia等期刊发表论文122篇(近5年一作/通讯57篇),SCI他引3869次,ESI高被引5篇,单篇SCI他引最高432次,相关研究成果获国家自然科学基金委工材学部专栏报道;以第一获奖人分别获2022湖北省技术发明二等奖、2022机械工业科学技术发明二等奖、2021中国有色金属十大科技进展;入选2019年国家自然基金委优秀青年基金,2022年中国机械工业科技创新领军人才、美国斯坦福大学2021全球前2%顶尖科学家。


上一篇:浙江大学尹俊等 | 双级温控熔融沉积(FDM)打印的数值模拟和可打印性分析
下一篇:用于工业零件修复的定向能量沉积:3D金属打印如何节省时间和降低成本
回复

使用道具 举报

推动3D打印

关注南极熊

通知

联系QQ/微信9:00-16:00

392908259

南极熊3D打印网

致力于推动3D打印产业发展

Copyright © 2024 南极熊 By 3D打印 ( 京ICP备14042416号-1 ) 京公网安备11010802043351
快速回复 返回列表 返回顶部