来源:EngineeringForLife
常规3D打印聚合物,精度只能控制在100-200微米量级(主要指打印出的纤维直径),考虑到细胞的尺寸在10微米左右,如果打印一个生物支架,100微米粗的柱子对10微米尺寸的细胞就有点像一座大山,细胞爬满整个支架的效率很低。如果将支架丝径降到接近乃至小于细胞尺度,会有什么有趣的现象呢?
EFL团队在超高精度支架制造方面有多年积累,可实现支架丝径可从3-50微米可控,在高精度支架上可实现纯结构调控细胞生长,如我们发现细胞可以类似竹子式的生长……除了再生医学应用外,高精度支架因所含微纳纤维,具有比表面积大、柔性好、孔隙率高等优点,还能广泛用于生化传感等领域。相关研究已发表在Materials Horizons,Small,Biofabrication等知名期刊(点击查看专题介绍),现推出支架定制服务。
1 片状支架
高精度膜片
多尺度膜片
高精度图案
可定制参数
2 管状支架
高精度管道
类血管支架
可定制参数
3 应用案例
细胞行为研究
常规的3D打印聚合物,精度只能控制在100-200微米数量级,而近场直写打印的支架精度为3-50微米(接近细胞尺度),可以很好地促进细胞粘附、增殖、分化及定向,可用于纯结构调控细胞行为研究。
细胞膜片构建 结构诱导细胞定向
器官芯片构建
高精度支架作为柔性线框模具,可实现微纳尺度的高效制造,方便灵活地制造微流控芯片,用于细胞定向、细胞图案化、器官芯片研究。
凝胶芯片制造及细胞定向诱导 多尺度血管芯片制造
水凝胶增强
针对软组织修复用水凝胶无法满足强度、韧性和缝合性要求的瓶颈,利用高精度支架作为结构增强相,基于协同增强效应来提高水凝胶的力学性能,提高组织修复成功率。
高精度支架复合GelMA水凝胶用于软骨修复
高精度支架复合fibrin水凝胶用于瓣膜修复
参考文献
[1] Xie Chaoqi, Gao Qing, Wang Peng, et al. Structure-inducedcell growth by 3D printing of heterogeneous scaffolds with ultrafine fibers.Materials & Design, 2019.
[2]Gao Qing, Xie Chaoqi, WangPeng, et al. 3D printed multi-scale scaffolds with ultrafine fibers for providingexcellent biocompatibility. Materials Science and Engineering: C, 2019.
[3] Jin Yuan, Gao Qing, Xie Chaoqi, et al.Fabricationof heterogeneous scaffolds using melt electrospinning writing: Design and optimization. Materials & Design, 2019.
[4] Lv Shang, Nie Jing, Gao Qing, et al. Micro/nanofabrication of brittle hydrogels using 3D printed soft ultrafine fiber moldsfor damage-free demolding. Biofabrication, 2019.
[5] Nie Jing,Gao Qing, Xie Chaoqi, et al. Construction of multi-scalevascular chips and modelling of the interaction between tumours and bloodvessels. Materials Horizons, 2019.
[6] ArielA. Szklanny, Lior Debbi, Uri Merdler, et al. High-Throughput Scaffold Systemfor Studying the Effect of Local Geometry and Topology on the Development and Orientationof Sprouting Blood Vessels. Advanced Functional Materials, 2019.
[7]JetzeVisser, Ferry P.W. Melchels, June E. Jeon, et al. Reinforcement of hydrogelsusing three-dimensionally printed microfibers. Nature Communications, 2015.
[8] Navid T. Saidy, Frederic Wolf, Onur Bas, et al. BiologicallyInspired Scaffolds for Heart Valve Tissue Engineering via Melt Electrowriting.Small, 2019.
|
上一篇:一文解析悬浮生物3D打印下一篇:清华大学:用于细胞培养和组织制造的生物3D打印
|