欧瑞康:3D打印技术助力热交换器效率提升

3D打印动态
2020
06/15
17:25
分享
评论
来源:欧瑞康美科表面技术

热交换器或热交换设备是用来使热量从热流体传递到冷流体,以满足规定工艺要求的装置,是对流传热及热传导的一种工业应用。热交换器不仅能提高设备运行效率、延长设备使用寿命、还能提高能源利用率、保障设备的安全,因此广泛应用于航空航天、汽车、电子设备、工业设备领域。

热交换的形式
1.被动式(通常为散热):
通过散热结构,利用空气作为介质进行热交换。

2.主动式(散热/加热/冷却),如:
热交换器
设备外挂,主动使用流动的空气作为介质进行热交换。
冷却板/加热板
设备外挂,通过介质对设备工作环境中的气氛进行加热或冷却。
介质通道
附着在需热管理的零件中,通过介质对零件本体进行加热或冷却。

传统热交换器的制造痛点
传统热交换器是由翅片及盖板组成的方型结构。其体积和重量较大,制造过程比较繁琐且热交换率有待提升;

传统制造方式有限,只能实现简单的介质通道形态/路径。较为复杂的通道容易造成介质流动阻力增大和流动死区的现象,导致热交换率大幅降低。

而热交换器在传统制造方式上的这些阻碍用3D打印/增材制造技术可以得到有效解决。

3D打印/增材制造技术的优势
关键热交换结构不再局限于翅片形态,工作区域的形态也可以由简单的方型变成配合设备/零件的包裹型结构;零部件可一体成型而无需大量的焊接工艺,且整体结构更为轻便。

介质通道可以伴随零部件一体成型,具备路径复杂、接触面大、热交换率高等优势。

典型应用案例
I  用于纺织机械的加热板
Oerlikon_Heat_1-e1592014003652.jpg

欧瑞康增材制造解决方案:

材料: AlSi10Mg
该材料具有良好的导热性能、较好的力学性能和轻量化特性;
设计:DFAM(面向增材的设计)
在设计上结合了需求和增材制造工艺的特性,不仅易于成型,更具有优秀的导热能力;
工艺:LPBF(激光粉床熔化工艺)
尺寸精度高,力学性能好、工艺稳定;
Oerlikon_Heat_2-e1592014008581.jpg
加热板剖面图
Oerlikon_Heat_3-e1592014014279.jpg
加热板流道结构

效果:
产品性能优异:流道截面小,表面积大
实现了传统工艺无法成型或因成本过高望而却步的设计
单件制作周期短
工艺链简单
Oerlikon_Heat_4-e1592014020115.jpg
加热板3D打印实物

I 用于赛车的电池冷却板

Oerlikon_Heat_5-e1592013997473.jpg
欧瑞康增材制造解决方案:

为热交换和流量的优化进行了CFD仿真
拓扑优化结构
该双螺旋内部结构无法利用传统机加工只能用增材制造成型

效果:
传热效率是管道结构的3.75倍,具有优异的冷却性能
压力损失是管道结构的1/12
与传统解决方案相比,在提升性能的同时减少了零件数量,减轻了部件总体重量




上一篇:展商委员会支持2020年Formnext的健康和卫生概念
下一篇:让手机变身3D打印机,最低1799元定位学校和家庭市场
回复

使用道具 举报

推动3D打印

关注南极熊

通知

联系QQ/微信9:00-16:00

392908259

南极熊3D打印网

致力于推动3D打印产业发展

Copyright © 2024 南极熊 By 3D打印 ( 京ICP备14042416号-1 ) 京公网安备11010802043351
快速回复 返回列表 返回顶部