来源: PuSL摩方高精密
负泊松比结构材料是一种在受压时表现为横向收缩,在受拉时表现为横向膨胀的有序多孔介质。独特的变形特性赋予了负泊松比结构材料诸多优异的力学性能,如高剪切强度、高抗压痕/抗冲击性能、高抗断裂性及能量吸收等。自从Lakes等人首次报道负泊松比聚氨酯泡沫以来,众多研究者都致力于开发新型负泊松比结构材料并寻找其潜在应用。内凹蜂窝结构是一种典型的二维负泊松比结构材料,通过内凹机制使材料呈现负泊松比效应。然而,由于高孔隙率,其刚度远低于组成材料的刚度。通过加入加强杆、制备负泊松比复合材料、设计变梯度结构、引入层次结构等方法可以显著提高结构材料的刚度。然而,上述方法大多数适用于二维的内凹蜂窝结构,这就意味着其负泊松比效应只能在平面内方向出现。
相比之下,三维内凹结构材料的工程应用潜力更大,但其刚度和负泊松比之间仍然存在此消彼长的问题且二者都与其胞元结构有着密切的关系。为满足日益增长的实际工程需求,需要设计一种既能保证负泊松比效应又能提升整体刚度的增强型负泊松比结构材料,并寻找胞元结构与泊松比和刚度的关联机制,最终实现通过结构参数对泊松比和刚度同时进行调控的目标。
近日,中国工程物理研究院唐昶宇研究员团队和西南交通大学许阳光副教授团队共同设计了一种新型的三维内凹负泊松比结构材料并对其结构参数与等效弹性模量(与刚度相关)和泊松比的关联机理开展了系统的研究。通过在典型的三维内凹结构(图1a)上添加箭头结构来实现增强目的(图1b和图1c),利用微尺度3D打印机(nanoArch P150,摩方精密)制备了增强型结构样品(图1d)。结合实验和有限元模拟发现,三维增强型内凹结构的等效弹性模量和负泊松比可以通过不同的结构参数(即厚度比h、斜杆长度比a、竖杆长度比b和重入单元的角度q)进行调整。例如,通过优化结构参数,增强型内凹结构的等效弹性模量比典型内凹结构提高12.32倍,而二者的泊松比均为-0.28。
图1.(a)典型三维内凹结构(RS)单元;(b)带有加强杆的三维内凹结构(RRS)单元;(c)对应的几何构型以及(d)实验样品照片(从左至右为RRS1-5)
此外,研究团队还探究了相对密度与等效弹性模量比、泊松比的关系,如图2所示。等效弹性模量比>1,表明增强型内凹结构在相同相对密度下有更高的刚度。此外,在相同的相对密度下,增强型内凹结构可以实现保持几乎不变的泊松比但显著提高材料的刚度,如图2(b)所示。添加的箭头结构与内凹结构之间形成了一种双箭头结构,形成的双箭头结构进一步促使了新结构在受压时产生收缩。因此该增强型内凹结构能在几乎不变的泊松比下有更高的刚度。图3中的位移云图也表明增强型内凹结构具有负泊松比效应。
图2.增强型内凹结构和典型内凹结构相对密度与等效弹性模量比、泊松比的关系
图3.在沿z方向的单轴准静态压缩试验下,试样RRS2在x方向上的位移云图
总的来讲,该工作通过独特的结构设计,实现了在几乎不牺牲负泊松比效应的前提下显著提高材料的刚度,为进一步拓宽负泊松比结构材料的应用范围提供了一种有效的解决方案,也对这类结构超材料性能导向的结构逆向设计进行了有益探索。上述研究成果以题为“A 3D Re-entrant Structural Metamaterial with Negative Poisson’s Ratio Reinforced by Adding Arrow Structures”发表在《Smart Materials and Structures》期刊上。论文第一作者为中国工程物理研究院和西南交通大学联合培养的硕士研究生王杰,通讯作者为中国工程物理研究院的唐昶宇研究员和西南交通大学的许阳光副教授,中国工程物理研究院总体工程研究所的硕士研究生吴宗泽和浙江大学的肖锐研究员在研究工作的开展和论文撰写过程中提供了重要帮助。
原文链接:
https://doi.org/10.1088/1361-665X/acb1e4
|