铂力特成立于2011年,全名为西安铂力特增材技术股份有限公司,是一家专注于工业级金属增材制造(3D 打印)的高新技术企业,为客户提供金属增材制造与再制造技术全套解决方案,业务涵盖金属 3D 打印设备的研发及生产、金属 3D 打印定制化产品服务、金属 3D 打印原材料的研发及生产、金属 3D 打印工艺设计开发及相关技术服务(含金属 3D 打印定制化工程软件的开发等)。
另外,杭州先临三维也勇闯科创板IPO,已经到了“第二轮问询”环节;但2019年11月主动申请撤回,终止IPO之旅,理由是“拟对下属子公司进行调整,调整完成后将再行申请上市”。详细报道https://www.nanjixiong.com/thread-137412-1-1.html
一只打印的兔子储存了自身的DNA信息,“A DNA-of-things storage architecture to create materials with embedded memory”的研究论文在《自然-生物技术》(Nature Biotechnology)期刊发表。研究人员将斯坦福兔子的 0 和 1 的二进制数据转换为 DNA 中 4 种碱基的数据( A、T、C、G),进而将 DNA 片段封装在二氧化硅小球内(小球大小为 160 纳米),这些小球则被嵌入可生物降解的3D打印聚合物材料中,最后使用这些聚合物材料来进行兔子的 3D 打印。详细报道https://www.nanjixiong.com/thread-138895-1-1.html
“Multivascular networks and functional intravascular topologies within biocompatible hydrogels”(3D打印会呼吸的器官),荣登《Science》杂志封面 。这个器官由水凝胶3D打印而成,结构性质柔软、生物可兼容、且内部有着精细的结构(分辨率达10-50微米),模拟肺功能的气囊,能够像肺部一样,朝周围的血管输送氧气。这一看似简单的功能,却曾是“3D打印器官”难以逾越的天堑。详细报道https://www.nanjixiong.com/thread-133726-1-1.html
“3D Printing of Personalized Thick and Perfusable Cardiac Patches and Hearts”(个性化、厚实、可灌注的心脏补丁和心脏的3D打印),发表在《Advanced Science》上,这是世界上首次有人成功通过工程学设计,打造出具有细胞、血管、心室的完整心脏,完全符合人类患者的免疫、细胞、生化和解剖学特性。技术过程:从患者身上采集了脂肪组织,并且将其中的细胞和非细胞物质分离开来;分离出的细胞随后与特制的打印材料(由糖和蛋白质)混合到一起打印出适合患者的心脏组织;它需要在生物反应器中经历成熟过程以保持细胞存活并使其生长以适应真人大小的心脏,成熟过程需要大约一个月。详细报道https://www.nanjixiong.com/thread-133481-1-1.html
“Additive manufacturing of ultrafine-grained high-strength titanium alloys”(超细晶粒高强度钛合金的增材制造)发表在 《Natrue》杂志上,利用“相互依赖理论”,钛铜合金具有较高的组织过冷能力,这是由于凝固过程中合金元素的分配所致,它可以克服激光中高热梯度的负面影响。打印过程无需任何特殊的工艺控制或其他处理,打印的钛铜合金试样具有完全等轴的细晶粒组织。与在类似加工条件下的常规合金相比,它们还显示出有出色的力学性能,如高屈服强度和均匀的伸长率,这归因于利用了高冷却速率和多次热循环而形成超细共析微结构。 详细报道https://www.nanjixiong.com/thread-138770-1-1.html
“Voxelated soft matter via multimaterial multinozzle 3D printing”(多材料多喷头3D打印制造出的体素级柔性物体)发布在《Nature》上,通过在单个喷嘴喷出材料时的快速切换,实现了体素级的多材料功能结构的快速打印,极大的拓展了3D打印在复杂功能结构的制造能力。也就是说,用一个喷头,快速切换打印材料,来实现多材料的精准打印,并且可以并行排列多达128个喷头。通过立体式的三维流道结构设计将多个材料入口和材料出口集成到单个喷头上,并使用高速电磁阀精准的控制每个流道内的压力使不同材料在喷头出口处可以连续切换打印,从而实现单个喷嘴对材料的体素级控制。详细报道https://www.nanjixiong.com/thread-137446-1-1.html
“Fabrication of arbitrary three-dimensional suspended hollow microstructures in transparent fused silica glass”(微加工3D打印技术生成高精度的石英玻璃中空微结构),发表于Nature Communications 上,科研人员将3D打印微结构浇铸在液体纳米复合玻璃材料中,随后用UV光在聚合物模板的顶部进行照光固化。然后对该结构进行热处理,将纳米复合材料转变成熔融石英玻璃,并从内部熔化3D打印模板,在此过程中,温度高达1300摄氏度,最终制造出带有中空复杂微通道的石英玻璃结构。通过石英玻璃混合器等精密测试部件,研究团队展示了通过这种结合微型3D打印技术的工艺在制造复杂玻璃产品领域的可行性,也为玻璃材料的微细加工提供了可行性。详细报道https://www.nanjixiong.com/thread-136129-1-1.html
“Rapid, large-volume, thermally controlled 3D printing using a mobile liquid interface”(高速大尺寸高产能光固化3D打印),这项新技术被称为HARP (high-area rapid printing高速大尺寸3D打印),发表在《Science》,它可实现创纪录的生产效率。HARP采用垂直打印,用紫外线将液态树脂固化为硬化的塑料。此过程可以打印出坚硬、有弹性甚至陶瓷。与其他3D打印技术常见的叠层结构相反,这些连续打印的零件机械性能很好。他们通过类似于液体特氟龙不粘液体的行为,解决了光固化过程树脂聚合产生热量的问题—— HARP通过窗口投射光线固化垂直移动的成型台板上的树脂,液体聚四氟乙烯在接口上流动得以除去热量,然后通过冷却单元进行循环。详细报道https://www.nanjixiong.com/thread-136768-1-1.html
“Fatigue-resistant high-performance elastocaloric materials made by additive manufacturing”发布在《Science》。论文发现增材制造应力制冷材料可以实现对具有长寿命、高性能的金属制冷剂进行独特的微观结构控制,抗疲劳、高性能镍钛合金的获得展示了增材制造在优化固态制冷技术的潜力。通过精巧设计的“工艺-微结构-属性-性能”策略,利用粉末激光定向能量沉积技术中的局部熔融和快速冷却的特点,调节元素粉末的比例达到近共熔成分混合,实现在二元合金基体中镶嵌富镍的金属间化合物的纳米复合微结构。所获得的应力制冷材料在准线性应力-应变行为中展现出极小的应力滞后,相比于通常的情况其材料效率提高了4到7倍,并且在一百万次循环中拥有可重复的应力制冷性能。详细报道https://www.nanjixiong.com/thread-138696-1-1.html
另外,3D打印眼镜框,也已经真正出现在不少线下眼镜店铺,例如 佩极(BRAGi)、日本的J of JINS和HOYA、杭州美戴科技等,年出货量达数万副、数十万副。这么多的3D打印眼镜,已经每天架在近视者的鼻梁上。
3D打印笔作为普通小孩都会玩的一种“3D打印机”,价格只有100多元甚至几十元,中国国内年销量达百万只,出厂量更是达千万只;中国文具巨头“得力”把3D打印笔当做文具来打造,凭借强大的渠道优势和品牌优势,国内销售后来居上。详细报道https://www.nanjixiong.com/thread-139101-1-1.html