来源: 生物设计与制造BDM
近年来,由于材料科学和制造技术的创新,3D打印已受到了广泛的关注[1],而生物材料和生物学方面的创新使得3D打印技术得以应用于体外构建复杂组织/器官的生物增材制造领域[2]。当前的生物增材制造技术可大致分为基于喷墨的生物打印,基于微丝挤出的生物打印,基于数字光处理 (DLP) 的生物打印,电场辅助的生物打印,以及熔融沉积制造 (FDM) 等(图1)[3,4]。尽管增材制造技术在不断进步 [5,6,7],但其现阶段的可靠性和产品的功能性尚不够完善,生物增材制造在应用端仍面临巨大的挑战[8]。
图1 各种经典的生物增材制造技术
众所周知,生物力学、流体力学、流变学、相变理论等物理学知识在打印过程中起着至关重要的作用,为实验设计和打印结果的预测提供指导[9]。然而,生物增材制造过程中的许多基础物理问题仍然缺乏深入的探索和理解[10,11]。例如,喷墨打印过程中液滴和基底的碰撞[12],DLP打印过程中未固化的光交联生物墨水对成型结构稳定性的影响[13]及电场辅助的打印过程中的电场力及粘性力的平衡[14]等。尽管这些现象已经被广泛报道和研究,但是仍然未能清晰阐释这些现象背后的物理机制。此外,除了打印结构的形状保真度,细胞存活率也是3D生物打印的另一重要参考指标[15],因为细胞的活性反映了细胞在打印过程中和打印后面临的环境[16,17]。尽管已有报道称,在包含喷头的生物3D打印过程中,剪切应力是造成细胞损伤的主要原因;而在基于光固化的生物3D打印过程中,大多数的细胞损伤源于紫外光辐射[18];目前尚未总结出对于不同生物增材制造工艺通用的细胞损伤标准。虽然已有研究者将物理/机器学习等模型用于分析/预测打印过程中造成的细胞损伤 [19,20],但仍然缺乏描述整个生物3D打印过程中的细胞损伤的物理模型。
综上所述,深入理解各种生物增材制造技术中所涉及的物理学将有助于研究人员更好地理解整个制造过程,并优化打印平台及相关工艺参数。因此,探索增材制造过程中涉及到的物理问题将有利于增材制造技术的发展,并弥补现有打印结构和临床转化之间的差距[21]。
为了进一步阐述物理学在生物增材制造过程中的重要性,本杂志组织了名为“生物或仿生增材制造中的物理问题”的主题特刊。在这期特刊中,我们收集到了6篇研究性文章,集中讨论了不同生物增材制造技术中的成形机制及设计原理。Yang等[22]研究了激光粉末床熔融打印 (LPBF) 过程中激光功率和扫描速度对打印结构的表面质量、致密性及表面纹理的影响。通过优化激光功率和扫描速度,可以避免因能量在基体中的过度储存与积累而造成的热胀冷缩。此项研究为LPBF工艺用于加工生物降解结构提供了科学依据。Valentin等[23]提出了一种创新的钛-6-铝-4-钒加工方法,通过直写打印辅以后期热处理的方式形成了具有微小孔隙的多孔形态的结构。通过在海藻盐中引入肽接枝和纤维蛋白,Qiu等[24]开发了可用于高分辨率电流体力学 (EHD) 生物3D打印的海藻酸盐基生物墨水。此打印工艺的成丝精度可达到30 μm,并可以对细胞生长进行定向引导,为细胞的生存和扩散提供理想的环境。Liu等[25]合成了可用于微丝挤出打印的一种基于壳聚糖/明胶和蛋清的复合水凝胶,并发现三聚磷酸酯 (TPP) 可最大限度地提高支架的物理和生物性能,显示了此工艺在组织工程领域的巨大潜力。Huo等[26]利用双极温控系统提高了单温控FDM的打印精度,并通过实验和理论分析探讨双温控系统对聚合物墨水流变性的影响,进而为提高热熔性聚合物的FDM打印精度提供了新思路。受kirigami艺术的启发,Yue等[27]通过优化设计几何参数,打印了具有不同机械性能的二维片材,并由二维片材组合形成具有良好的形状记忆能力和可编程性的三维结构,显示了在智能负载方面的巨大潜力。
文章专辑目录
1. Physics problems in bio or bioinspired additive manufacturing
生物或仿生增材制造中的物理问题
Jun Yin, Jin Qian, Yong Huang
2. Laser additive manufacturing of zinc: formation quality, texture, and cell behavior
锌的激光增材制造:成形质量,纹理及细胞行为
Mingli Yang, Liuyimei Yang, Shuping Peng, Fang Deng, Yageng Li, Youwen Yang, Cijun Shuai
3. Direct ink writing to fabricate porous acetabular cups from titanium alloy
利用钛合金直写打印制造多孔髋臼杯
Naima Valentin, Weijian Hua, Ashish K. Kasar, Lily Raymond, Pradeep L. Menezes, Yifei Jin
4. Functional alginate-based bioinks for multiscale eletrohydrodynamic bioprinting of living tissue constructs with improved cellular spreading and alignment
利用多尺度电流体生物3D打印制备功能性海藻酸基的活体组织,并提升细胞的扩散和排列
Zhennan Qiu, Hui Zhu, Yutao Wang, Ayiguli Kasimu, Dichen Li, Jiankang He
5. Evaluation of different crosslinking methods in altering the properties of extrusion printed chitosan-based multi-material hydrogel composites
不同交联方式对挤出打印的壳聚糖复合水凝胶材料性能的评价
Suihong Liu, Haiguang Zhang, Tilman Ahlfeld, David Kilian, Yakui Liu, Michael Gelinsky, Qingxi Hu
6. Numerical simulation and printability analysis of fused deposition modeling with dual temperature control
双极温控的熔融沉积打印的数值模拟和可打印性分析
Xiaodan Huo, Bin Zhang, Qianglong Han, Yong Huang, Jun Yin
7. Shape recovery properties and load-carrying capacity of a 4D printed thick-walled kirigami inspired honeycomb structure
基于kirigami的4D打印厚壁蜂窝结构的形状恢复特性和承载能力
Chengbin Yue, Wei Zhao, Fengfeng Li, Liwu Liu, Yanju Liu, Jinsong Leng
引用本文
Yin J, Qian J, Huang Y, 2023. Physics problems in bio or bioinspired additive manufacturing. Bio-des Manuf, 6(2):99-102. https://doi.org/10.1007/s42242-023-00234-6
专辑目录链接
https://link.springer.com/journal/42242/volumes-and-issues/6-2
|
上一篇:湖医附一医院3D打印技术再显神威帮助泌尿外科成功“拆弹”下一篇:“2023华曙高科3D打印创新及产业化论坛暨合作伙伴招商会”顺利举行
|