经过三十多年的发展,增材制造(3D打印)已经成为主流的制造工艺。增材制造通过直接基于3D模型逐层添加材料来制造产品。与传统制造技术相比,它能够制造复杂的零件,并允许更多的设计优化自由度。机器学习现在是一种热门技术,已被用于医学诊断、图像处理、预测、分类、学习关联、回归等领域。目前,机器学习在制造业中的应用越来越受到关注,包括增材制造。近期,由奥克兰大学的Jingchao Jiang博士,山东大学的Bin Zou,Jikai Liu教授以及佐治亚理工的David Rosen教授在International Journal of Computer Integrated Manufacturing(影响因子2.861)上发起了Machine learning in Additive Manufacturing专刊。目前正在征稿中。
征稿包含以下主题但不限于以下主题:
●Artificial intelligence in AM
●Machine learning aided design for AM
●Machine learning for AM optimization
●Machine learning for AM decision making
●Machine learning for AM process planning
●Machine learning for 3D bioprinting
●Machine learning in hybrid additive-subtractive manufacturing
●State-of-the-art and new perspectives on machine learning in AM
●Artificial intelligence integrated AM systems
●Machine learning applications in AM